Approach to Upper GI Bleed

5/2/2022 ALEKSANDR BIRG, MD ASSISTANT PROFESSOR OF MEDICINE

Disclosure

I have no disclosures

Objectives

Presentation and Prediction of Upper GI Bleed

- Initial Examination
- Predictors
- Non-cirrhotic vs Cirrhosis

Initial Management

- Medical Management
- Non endoscopic management

Presentation for Upper GI bleed

300,000 admission per year in the US

Mortality 3.5-10%

Suspected if:

- Hematemesis
- Coffee ground emesis
- Melena
- Hematochezia (if severe upper GI source)

GASTROENTEROLOGY 2020;159:1120-1128

Major causes

Peptic ulcer

Esophagogastric varices

Arteriovenous malformation

Tumor

Esophageal (Mallory-Weiss) tear

Examination

Mild blood loss/hypovolemia (<15%)- tachycardia

Moderate blood loos (15-40%)- orthostatic hypotension

Significant blood loss (>40%)- supine hypotension

Initial Management

Best predictive factors to consider for high risk of GI bleed:

- Malignancy history
- Cirrhosis history
- Hypovolemia (tachycardia, hypotension, shock)
- Hematemeis
- History of NSAID/ASA use
- Hemoglobin <8 g/dL

Predictors of cirrhosis

Smail and nouular liver. Surface nodulatir

- Collateral veins, decreased portal flow
- Splenomegaly, ascites
- CT/MRI
- Elastography- Measures liver stiffness

Labs

Portal Hypertension-Prognosis of variceal bleed

Thrombocytopenia is an independent factor for bleeding

Platelet count at a value of 150,000 showed sensitivity of 0.80 (95% CI 0.73 to 0.85) and specificity of 0.68 (95% CI 0.57 to 0.77)

• Platelet count <160,000/mm³ (LR 6.3)

Presence of ascites (likelihood ratio [LR] 7.2)

Spider angiomata (LR 4.3)

TABLE 2. Blatchford scoring: Admission risk markers and associated score component values

Admission risk marker	Score component value
Blood urea, mmol/L	
6.5-<8.0	2
8.0-<10.0	3
10.0-<25.0	4
≥25	6
Hemoglobin for men, g/dL	
12.0-<13.0	1
10.0-<12.0	3
<10.0	6
Hemoglobin for women, g/o	iL.
10.0-<12.0	1
10.0	6
Systolic blood pressure, mm	Hg
100-109	1
90-99	2
<90	3
Other markers	
Pulse \geq 100/min	1
Presentation with melena	1
Presentation with syncop	e 2
Hepatic disease	2
Cardiac failure	2

Adapted with permission from Blatchford O, Murray WR, Blatchford M. A risk score to predict need for treatment for uppergastrointestinal haemorrhage. Lancet 2000;356:1318-21.¹⁵

Predictive calculator

Glasgow-Blatchford Bleeding Score

- Uses BUN, Hemoglobin, Systolic blood pressure, pulse, symptoms
- Score of >0 has 99% sensitivity for severe GI bleed
- Score of 0-1 shown to have low risk of bleeding and can be considered for discharge (likelihood ration 0.02)

Initial Resuscitation

Fluid Resuscitation

NG tube placement

- Considered in all upper GI bleed
- 15% of upper GI bleed will have negative NG lavage

PPI

- No mortality difference for PPI prior to intervention
- Early PPI reduces high-risk stigmata on endoscopy (OR 0.67) and need for intervention (OR 0.68)

Prokinteics

 Erythromycin or metoclopramide 20-120 minutes prior to intervention to reduce need for repeat endoscopy

Antibiotics

PPI in GI bleed

Continuous infusion vs intermittent dose

Large meta-analysis of major US and European publications

Non-inferior to use intermittent dosing

• No difference in re-bleed, mortality, urgent intervention or length of hospital stay

Source	Intermittent Bolus, No.		Continuous Infusion, No.		Risk Ratio	Favors :	Favors	Weight
	Events	Total	Events	Total	(M-H, Fixed, 95% CI)	Bolus	Infusion	%
Andriulli et al, ¹⁴ 2008	19	239	28	243	0.69 (0.40-1.20)	-		43.2
Chen et al, 16 2012	6	101	7	100	0.85 (0.30-2.44)			11.0
Choi et al,17 2009	3	21	1	19	2.71 (0.31-23.93)			1.6
Jang et al, 24 2006	0	19	2	19	0.20 (0.01-3.91) -			3.9
Javid et al, ²⁰ 2009	4	53	4	53	1.00 (0.26-3.79)			6.2
Kim et al, ²¹ 2012	2	54	1	52	1.93 (0.18-20.60)			1.6
Sung et al, ²⁵ 2012	3	105	2	95	1.36 (0.23-7.95)		•	3.3
Ucbilek et al, ²⁶ 2013	3	37	10	36	0.29 (0.09-0.97)			15.8
Yamada et al, ²² 2012	4	13	5	15	0.92 (0.31-2.73)			7.2
Yüksel et al, ²³ 2008	3	49	4	50	0.77 (0.18-3.24)			6.2
Total (95% CI)	47	691	64	682	0.74 (0.52-1.06)	\diamond		100.0
Heterogeneity: $\chi_9^2 = 5.96$ Test for overall effect: z =	(P = .74) / ² 1.65 (P = .1	=0% 0)			0.01	0.1 1. Risk Ratio (M-H	0 10 I, Fixed, 95% CI)	100

JAMA INTERN MED. 2014;174(11):1755-1762.

Red blood cell (RBC) transfusion decisions in adults

	Villaneuva et al. (14)		Jairath et al. (15) ^a		
	Restrictive strategy (N = 444)	Liberal strategy (N = 445)	Restrictive strategy (N = 257)	Liberal strategy (N = 383)	
Hemoglobin threshold (g/dL)	7	9	8	10	
Further bleeding, n (%)	45 (10.1)	71 (16.0)	13 (5.1)	31 (8.1)	
Relative effect size (95% CI)	Adjusted HR = 0.68 (0.47-0.98)		RR = 0.62 (0.33-1.17)		
Absolute effect size (95% CI)	Difference = -6% (-10% to -1%)		Difference = -3% (-7% to 1%)		
Mortality, n (%)	23 (5.2)	41 (9.2)	14 (5.4)	25 (6.5)	
Relative effect size (95% CI)	Adjusted HR = 0.55 (0.33-0.92)		RR = 0.83 (0.44-1.57)		
Absolute effect size (95% CI)	Difference = -4%	(-7% to -1%)	Difference = -1%	6 (-5% to 3%)	

"Cluster randomized trial in which participating sites rather than individual patients were randomly assigned to a study arm.

AM J GASTROENTEROL 2021;116:899-917.

Blood Products

Platelets- consider if below 50,000 or if falling

• If receive more than 8 units pRBC, monitor platelets due to dilution effect

Hemostatic products

- Uncertainty to role/benefit of products
- Question regarding benefit of prothrombotic agents
 - Recombinant factor VII
 - Prothrombin complex concentrates
 - Fibrinogen

Variceal Bleed

Cautious blood products and crystalloid administration

- Hemoglobin 7-8 g/dL
- Increase perfusion can worsen portal pressure leading to further rebleeding

Transfusion Fresh Frozen Plasma and/or Platelets

Antibiotics for 7 days to decrease risk of bacterial infection

Octreotide 50-µg IV bolus followed by a 50-mg/h infusion

Intubation strongly considered to avoid aspiration

Urgent upper endoscopy recommended (vs TIPS)

Early Endoscopy

Recommended within 12 hours for variceal bleed

Conflicting data for non variceal bleeding

• Data showing urgent endoscopy (within 12 hours) associated with poor outcomes

Table 6. Randomized trial of endoscopy <6 hours vs 6–24 hours after gastroenterology consultation in patients with hematemesis or melena and Glasgow-Blatchford score ≥12 (53)

Outcome	Endoscopy <6 hr (N = 258)	Endoscopy 6–24 hr (N = 258)
Hours from presentation to endoscopy, mean \pm SD	9.9 ± 6.1	24.7 ± 9.0
Further bleeding (30 d), n (%)	28 (10.9)	20 (7.8)
Death (30 d), n (%)	23 (8.9)	17 (6.6)
Hospital days, median (range)	5 (4–9)	5 (3–8)
Units of blood transfused, mean \pm SD	2.4 ± 2.3	2.4 ± 2.1
Endoscopic therapy, n (%)	155 (60.1) ^a	125 (48.4)
$^{a}P = 0.01$ vs endoscopy 6–24 hou	irs.	

Alternatives to EGD

Vasoactive medications to decrease portal blood flow

• Octreotide

Balloon tamponade

Transjugular intrahepatic portosystemic shunting (TIPS)

Surgery

Citation

Laine, Loren, et al. "ACG clinical guideline: upper gastrointestinal and ulcer bleeding." *Official journal of the American College of Gastroenterology* ACG 116.5 (2021): 899-917.

Mullady, Daniel K., Andrew Y. Wang, and Kevin A. Waschke. "AGA clinical practice update on endoscopic therapies for non-variceal upper gastrointestinal bleeding: expert review." *Gastroenterology* 159.3 (2020): 1120-1128.

Hwang, Joo Ha, et al. "The role of endoscopy in the management of acute non-variceal upper GI bleeding." *Gastrointestinal endoscopy* 75.6 (2012): 1132-1138.

Questions

