

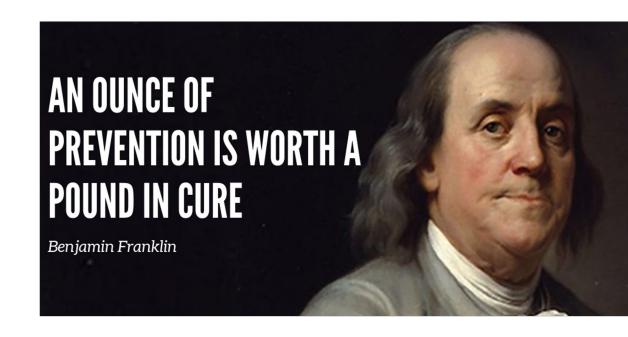
"Tripledemic"

Severe Pediatric Respiratory Illnesses in the ED

emRIC ECHO

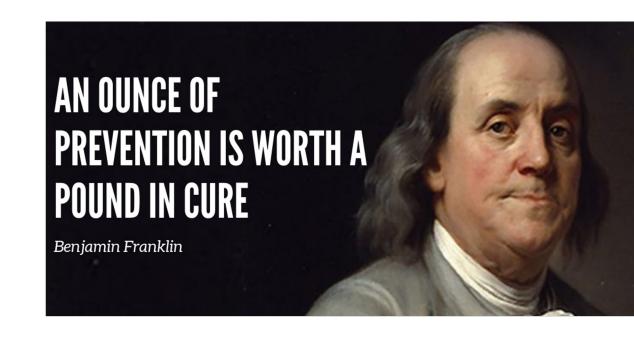
12.12.2022

Emergency Medicine for Rural and Indigenous Communities (emRIC) ECHO

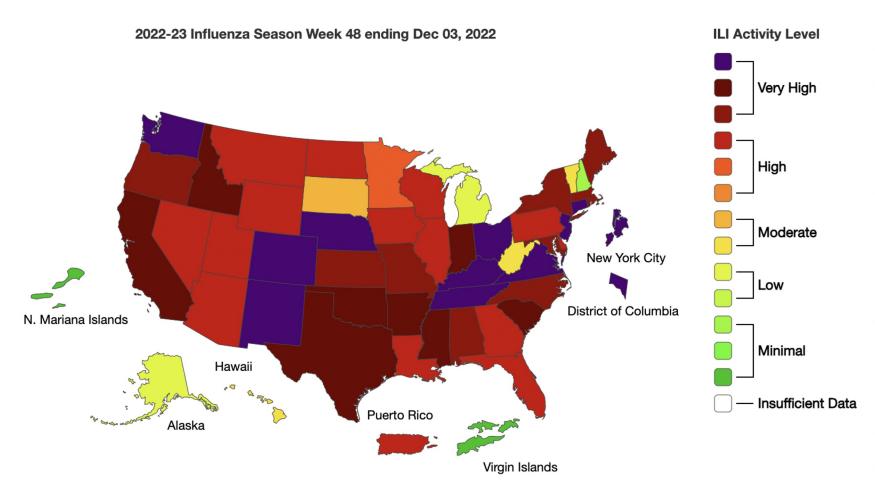

Panelists:

- Dr. Liz Sanseau, PEM Physician, Children's Hospital of Philadelphia
- Dr. Rachel Tuuri, University of New Mexico Peds EM Division Chief
- Dr. Tom Faber, IHS CCC for Pediatrics, CMO ABQ Area IHS
- Dr. Dan Schnorr, ED Director San Carlos Apache

Facilitator: Dr. Paul Charlton, IHS CCC for EM, ED Director GIMC


ECHO Objectives

- Discuss best practices in clinical EM and EM operations
- Share experiences & innovative strategies for solving clinical and operational challenges


Objectives today

- Nurses: Recognizing sick kids, escalation pathways
- Providers: Escalation pathways, safe intubation considerations
- Operations: What equipment needs to be ordered/tracked

Session overview

- 1. Optimizing practice & preparations
- 2. Early recognition of sick kids
- 3. Plan for escalating respiratory support
- 4. Ensure adequate equipment/supplies
- 5. Optimizing preparations for intubation
- 6. Innovations

CDC US Weekly Influenza Surveillance Report, https://www.cdc.gov/flu/weekly/index.htm Accessed 12.9.22

Detections

RSV

CDC National Respiratory and Enteric Virus Surveillance System (NREVSS),

https://www.cdc.gov/surveillance/nrevss/rsv/natl-trend.html accessed 12.9.2022

PEDIATRICS/ORIGINAL RESEARCH

Video-Assisted Laryngoscopy for Pediatric Tracheal Intubation in the Emergency Department: A Multicenter Study of Clinical Outcomes

- ▶ 11 Academic Pediatric EDs
- ► Prospective observational data
- N = 1412 tracheal intubations
- ▶ Primary outcome: First-attempt success & adverse outcomes

Definitions

Adverse airway outcomes =

aspiration, cardiac arrest, dysrhythmia, hypotension requiring intervention, hypoxia (categorized as moderate when the lowest SpO2 was less than 90% and severe when less than 80%), laryngospasm, lip or dental injury, mainstem bronchial intubation, mucosal injury, pneumothorax or pneumomediastinum, unrecognized esophageal intubation with delayed recognition and vomiting.

Severe adverse airway outcomes =

aspiration, cardiac arrest, hypotension, severe hypoxia, and unrecognized esophageal intubations.

Results

- ► First-attempt success overall = 70%
- ► Experienced at least 1 adverse airway outcome = 30.2%
- ► Experienced severe adverse airway outcome = 17.3%
- ► Experienced cardiac arrest = 2.0%
- ► Experienced severe hypoxia (spo2 <80%) = 18.7%

Other findings

- ▶ Use of VL = 30% reduction in odds ratio for experiencing severe adverse airway outcome
- ► Age <12 months and a respiratory indication for intubation = associated with decreased odds of 1st attempt success
- ▶ Use of NMB agent associated with higher odds of 1st attempt success

Other findings

- ► Pts receiving apneic oxygenation = 42.6%
- ► Most commonly used meds: Ketamine and Rocuronium
- ➤ Sites with high-use of VL (use VL >80% of time) had a higher rate of firstattempt success

My article take away

- ► Higher risk than adult intubations
- ► Preparation & practice may save lives and careers

SimBox Telesim

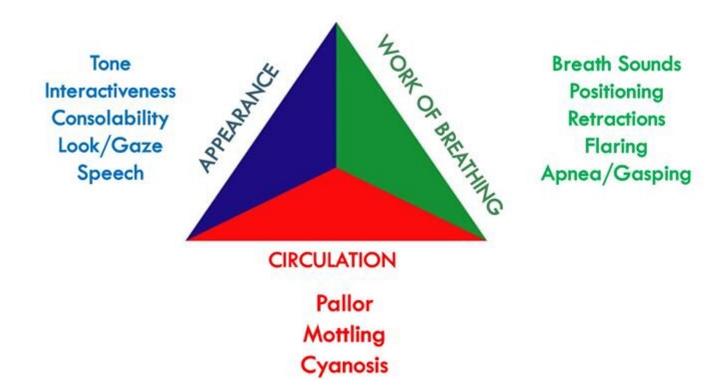
Telesim led by Dr. Liz Sanseau

SimBox Telesim Debrief:

How to recognize sick kids?

Mental framework of escalating steps of respiratory support?

How to arrange telesim or low fidelity sims?


Session overview

1. High stakes

2. Early recognition of sick kids

- 3. Escalating resp support
- 4. Equipment/supplies
- 5. Optimize intubation
- 6. Innovations

Recognizing Sick Kids: Pediatric Assessment Triangle

Dieckmann et al. Pediatr Emerg Care. 2010 Apr;26(4):312-5.

For panelists: Use sick/not sick gestalt? Or get specific?

RESPIRATORY SCORE (RS)

Variable	0 points	1 point	2 points	3 points
RR				
<2 mo		≤60	61-69	≥70
2-12 mo		≤50	51-59	≥60
1-2 yr		≤40	41-44	≥45
Retractions	None	Subcostal or intercostal	2 of the following: subcostal, intercostal, substernal, OR nasal flaring (infant)	3 of the following: subcostal, intercostal, substernal, suprasternal, supraclavicular OR nasal flaring / head bobbing (infant)
<u>Dyspnea</u>				
0-2 years	Normal feeding, vocalizations and activity	1 of the following: difficulty feeding, decreased vocalization or agitated	2 of the following: difficulty feeding, decreased vocalization or agitated	Stops feeding, no vocalization or drowsy and confused
Auscultation	Normal breathing, no wheezing present	End-expiratory wheeze only	Expiratory wheeze only (greater than end-expiratory wheeze)	Inspiratory and expiratory wheeze OR diminished breath sounds OR both

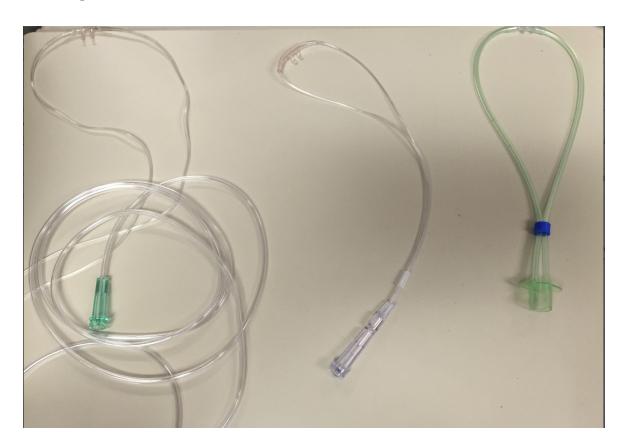
https://www.seattlechildrens.org/pdf/bronchiolitis-pathway.pdf accessed 12.9.2022

Session overview

- 1. High stakes
- 2. Recognize sick kids

3. Plan escalating respiratory support

- 4. Equipment/supplies
- 5. Optimize intubation
- 6. Innovations


Escalation of Respiratory Support for Patients with Bronchiolitis

Sample Respiratory Support Escalation Guideline

Dr. Dom Maggio / White River Apache ED, Arizona

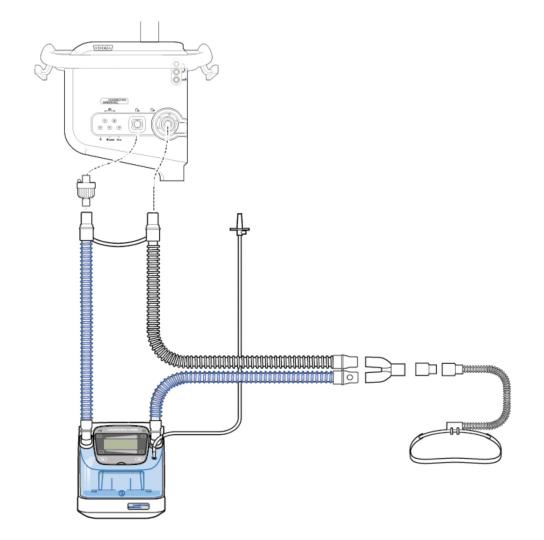
- 1. Nasal cannula 0-2L/min
 - a. Antipyretics
 - b. Suctioning q 2 hours
- 2. If persistent increased work of breathing or hypoxia -> HHFNC
 - a. Start @ 2 L/kg/min (max)
 - b. Titrate down based on WOB
 - c. Place IV / Consider IVF bolus
- 3. Persistent increased work of breathing -> CPAP (Hamilton setting "NIV")
 - a. PEEP = 5 Titrate as needed up to PEEP of 10
 - b. NPO
 - c. IVF bolus / Maintenance IVF
 - d. Appropriately sized RAM Cannula
- 4. Persistent increased work of breathing -> BIPAP (Hamilton setting "NIV-ST")
 - a. Fi02 = 100% and titrate down 02 sat target >93%
 - b. Back up rate = 25% of RR
 - c. Pinsp = 5 Titrate by 2 up to 15 (remember, this is a delta number)
 - d. PEEP = 5-10 (or what cpap was at) Titrate to 10 as needed
- 5. Indications for Intubation
 - Episodes of apnea
 - b. Episodes of hypoxia on BIPAP
 - c. Persistent increased work of breathing despite maximal BIPAP settings

High Flow Nasal Cannula

Left: low-flow NC

Middle: HFNC

Right: Neotech "RAM" HFNC


https://www.pedsurglibrary.com/apsa/view/Pediatric-Surgery-

NaT/829021/all/Adjuncts_in_Respiratory_Car e#:~:text=The%20RAM%20nasal%20cannula%20(NeoTech,of%20breathing%20during%20

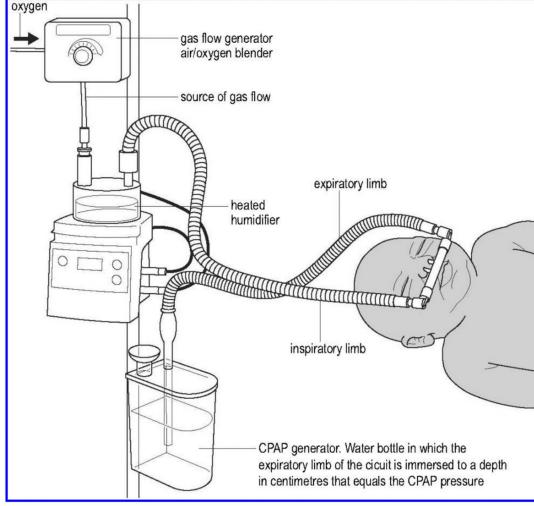
Example: Hamilton machine for HHFNC

Some machines can be used for mechanical ventilation

https://www.hamiltonmedical.com/en_US/Products/Technologies/H igh-flow-nasal-cannula-therapy.html

Clarifying terms

RAM cannula = brand name HFNC


Heated / humidified high flow vs simple HFNC

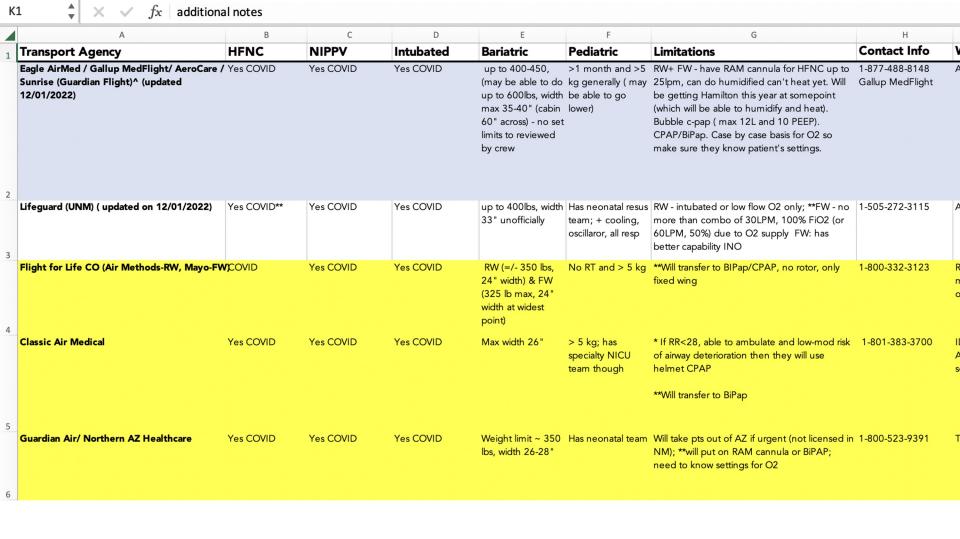
Bubble CPAP (photo on right)

CPAP

BiPAP

CPAP generator. Water bottle in which the expiratory limb of the cicuit is immersed to a depth in centimetres that equals the CPAP pressure Image: Duke, CPAP: a guide. Paediatrics and International Child Health, 34(1), 2014. prongs

Schematic diagram of commercially available bubble CPAP system connected to an infant using close-fitting nasi


EMS transfers

What can transport teams fly?

Avoid having EMS arrive and need to trial pt on lower level care for transport

Pediatric	Limitations
>1 month and >5 kg generally (may be able to go lower)	RW+ FW - have RAM cannula for HFNC up to 25lpm, can do humidified can't heat yet. Will be getting Hamilton this year at somepoint (which will be able to humidify and heat). Bubble c-pap (max 12L and 10 PEEP). CPAP/BiPap. Case by case basis for O2 so make sure they know patient's settings.
Has neonatal resus team; + cooling, oscillaror, all resp	RW - intubated or low flow O2 only; **FW - no more than combo of 30LPM, 100% FiO2 (or 60LPM, 50%) due to O2 supply FW: has better capability INO

Panelist question

What are the common problems you've faced regarding HFNC, CPAP, BiPAP escalation plan?

Equipment availability?

How to use it?

Decision making?

Escalating too early / too late?

Session overview

- 1. High stakes
- 2. Recognize sick kids
- 3. Escalating resp support

4. Do we have equipment/supplies?

- 5. Optimize intubation
- 6. Innovations

Operations: Equipment

For panelists: what equipment are you already running short on?

Advice on equipment people should look through now, to make sure they are prepared for what's coming?

And if you don't have X or Y, then order it now?

- Pediatric BP cuffs
- Peds pulse ox
- Peds size IVs
- Peds nasal cannula
- Peds HFNC
- Peds ETT sizes
- VL Miller 0 and 1 blades

Session overview

- 1. High stakes
- 2. Recognize sick kids
- 3. Escalating resp support
- 4. Equipment/supplies?

5. Optimize prep for safe intubations

6. Innovations

Panelist: Intubation tips

Shared mental model?

Use of checklist?

DL vs VL?

Apneic oxygenation?

Frequent pitfalls?

Operations: How do you organize things?

For panelists: Recommendations for making supplies accessible and reliable?

Pediatric airway cart? Airway bags? Airway box with a checklist taped to the side?

How do you ensure it is restocked correctly?

UNM ED Intubation Tool

Notes:

Post-Intubation Steps Actions: Ensure tube placement and security Verify placement (auscultation, capnography) Secure tube Place OG tube (optional) Obtain CXR Review CXR Order vent settings Ensure post-intubation sedation Avoid hyperoxia

Created 2019 by David Jolley MD, Michael Lauria MD NRP FP-C, Isaac Tawil MD FCCM, Rachel Tuuri MD, and Darren Braude MD

UNM ED Intubation Tool

	Intubation Briefing Pre-arrival when possible
Actions:	
 Assemble team Call RT, pharmacy (P/EDRU page), D Gather equipment 	PART
 Verbalize primary and backup plan 	
☐ Verbalize drugs & doses	
 Address potential problems 	
 Evaluate for difficulty, hypoxia, hypoxia 	otension
☐ Initiate preoxygenation	

DIFFICULT AIRWAY RESPONSE TEAM (DART) CALL 333

Intubation Timeout Checklist	
Actions:	
CALL	RESPONSE
Equipment Suction Backups (Bougie, iGel, BVM, OPA/NPA) Patient	Out and ready Out and ready
☐ Monitors & end tidal CO₂ ☐ Vascular access ☐ Positioning ☐ Apneic oxygenation	Attached and working IV working Optimized Nasal canula on at 5 Lpm
Medications Induction agent Paralytic Vasopressor	mg of ready mg of ready Out and ready
Resuscitation Last set of vitals	BP is, HR, sats
What concerns does anyone have?Quiet for induction please! Push medications.	

UNM ED Intubation Tool Supplemental Material

Pre-med (optional)	Weight-Based Dose	Max Dose
Atropine	0.02 mg/kg	0.5 mg
Commonly used in infants < 1 year, or children < 5 years when using succinvictorine		

Induction	Weight-Based Dose	Max Dose
Etomidate	0.2 - 0.4 mg/kg	30 mg
Ketamine	1.5 – 2 mg/kg	0.5 – 2 mg/kg
Ketamine IM Dosing	5 – 10 mg/kg IM	250 mg IM
Propofol	1.5 mg/kg	1.5 mg/kg

Paralytic	Weight-Based Dose	Max Dose
Rocuronium	1.2 - 1.5 mg/kg	80 mg
Succinylcholine*	1.5 mg/kg	1.5 mg/kg
Vecuronium	0.1 mg/kg	10 mg

^{*}Beware malignant hyperthermia. Do not use in severe crush injury, rhabdo, muscular dystrophy, cerebral palsy, 48 hours after burns, multiple trauma, denervating injury, or hyperkalemia.

Vasopressor	Weight-Based Dose	Max Dose
Epinephrine* 1:10,000	0.01 mg/kg 0.1 mL/kg	0.5 mg
*For PALS or ACLS		
Epinephrine – Push Dose	Data limited	10 - 100 mcg
Phenylephrine – Push Dose	Data limited	10 - 100 mcg

UNM ED Intubation Tool Supplemental Material

Peds Ventilator Strategies*		
Mode	SIMV + VC	
PEEP	5 cm H ₂ O	
Tidal Volume	8 mL/kg	
Pressure Support	10 cm H ₂ O	
Backup Rate	24 breaths/min	

^{*}Routine settings (healthy lungs). Discuss settings with ICU **immediately** for patients with profound acidosis or those with asthma, bronchiolitis, or DKA.

Peds Post-Intubation Sedation

Push Dose (Recommended)

	Weight-Based Dose	Max Dose**
Fentanyl*	1-2 mcg/kg q5 min PRN	25 to 75 mcg q5-20 min PRN
Lorazepam	Not recommended	2-4 mg boluses q10-30 min PRN
Midazolam	0.1-0.2 mg/kg q5 min PRN	1-4 mg boluses q10-30 min PRN
Ketamine	0.5 mg/kg PRN (data limited)	0.5 mg/kg q10-20 min PRN

Infusions (Not-recommended)

	masions (not recommended)		
Fentanyl*	Starting dose 1-2 mcg/kg/hr Titrate by 1 mcg/kg/hr	Starting dose 25-75 mcg/hr Titrate by 25 mcg/hr	
Lorazepam	No data available	Starting dose 0.5-2 mg/hr Titrate by 0.5 mg/hr	
Midazolam	Starting dose 0.06-0.12 mg/kg/hr Titrate by 0.06 mg/kg/hr	Starting dose 1-4 mg/hr Titrate by 1-2 mg/hr	
Propofol	Starting dose 5-10 mcg/kg/min Titrate by 5 mcg/kg/min	Starting dose 5-10 mcg/kg/min Titrate by 5 mcg/kg/min	

^{*}Used for analgesia, not sedation

^{**}Also see UNM Policy "Adult ICU Analgesia and Sedation"

Implementing Sims and Practice drills

Question for panelists: how are you preparing for these higher-risk situations?

Use of sims / hands on sessions?

Practice with VL vs DL?

Pediatric Endotracheal Intubation, Josh Nagler:

https://www.youtube.com/watch?v=nEa3E5tuVJM

https://www.maskinduction.com/atlas-of-pediatric-intubation-technique.html

Session overview

- 1. High stakes
- 2. Recognize sick kids
- 3. Escalating resp support
- 4. Equipment/supplies?
- 5. Optimize intubation

6. Innovations

ED Observation Plan when no inpatient Peds

Dr. Dan Schnorr sharing innovation from San Carlos Apache ED

January 25, 2023 ECHO 9:30-11:00am MT

Dr. Dom Maggio / White River Apache ED, Arizona

Escalation of Respiratory Support for Patients with Bronchiolitis

- 1. Nasal cannula 0-2L/min
 - a. Antipyretics
 - b. Suctioning q 2 hours
- 2. If persistent increased work of breathing or hypoxia -> HHFNC
 - a. Start @ 2 L/kg/min (max)
 - b. Titrate down based on WOB
 - c. Place IV / Consider IVF bolus
- Persistent increased work of breathing -> <u>CPAP</u> (Hamilton setting "NIV")
 - a. PEEP = 5 Titrate as needed up to PEEP of 10
 - b. NPO
 - c. IVF bolus / Maintenance IVF
 - d. Appropriately sized RAM Cannula
- 4. Persistent increased work of breathing -> BIPAP (Hamilton setting "NIV-ST")
 - a. FiO2 = 100% and titrate down 02 sat target >93%
 - b. Back up rate = 25% of RR
 - c. Pinsp = 5 Titrate by 2 up to 15 (remember, this is a delta number)
 - d. PEEP = 5-10 (or what cpap was at) Titrate to 10 as needed
- 5. Indications for Intubation
 - a. Episodes of apnea
 - b. Episodes of hypoxia on BIPAP
 - c. Persistent increased work of breathing despite maximal BIPAP settings

Questions

Summary

- 1. High stakes, good time to optimize practice & preparations
- 2. Early recognition of sick kids
- 3. Plan for escalating respiratory support
- 4. Ensure adequate equipment/supplies
- 5. Optimizing preparations for intubation
- 6. Innovations

References

Dieckmann RA, Brownstein D, Gausche-Hill M. The pediatric assessment triangle: a novel approach for the rapid evaluation of children. Pediatr Emerg Care. 2010 Apr;26(4):312-5. doi: 10.1097/PEC.0b013e3181d6db37. PMID: 20386420.

Duke, T. CPAP: a guide for clinicians in developing countries, Paediatrics and International Child Health, 34(1), 2014, pp1-11.

Miller et al, Video Assisted Laryngoscopy for Pediatric Tracheal INtubation in the Emergency Department, Annals of EM, 10.15.2022.

Seattle children's links: https://www.seattlechildrens.org/healthcare-professionals/gateway/clinical-resources/pathways/

CHOP links: https://www.chop.edu/pathways-library/emergency

Guidelines for Shared Mental Models

What open-access resources are people using?

San Carlos Apache - Peds Respiraory Obs (PRO) Unit

Accepted admitting diagnosis:

Bronchiolitis COVID

Flu

Pneumonia

Croup

Exclusion criteria:

Age < 3 months, corrected for gestational age

Pre-existing neurologic, cardiac or pulmonary comorbidity (except asthma, which is permitted as a comorbidity but not as an admitting diagnosis)

Status asthmaticus

Requires suctioning more frequently than Q2H

Requires racemic epinephrine > 2 doses

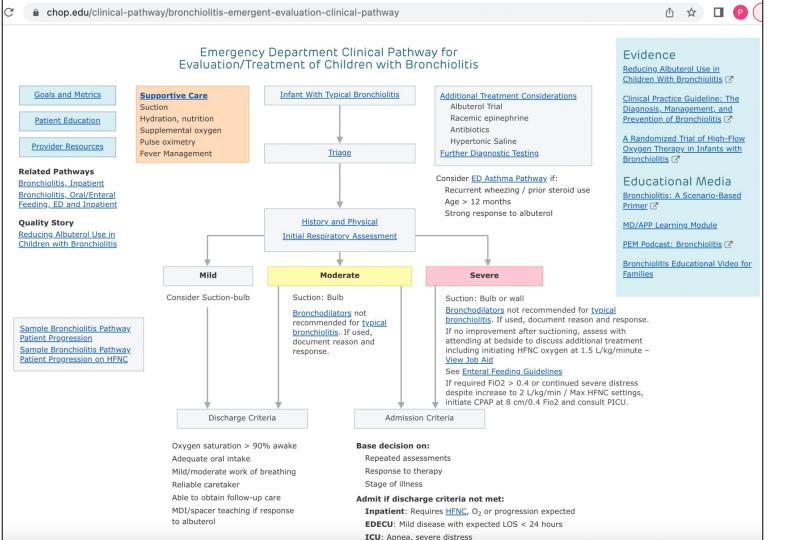
Requires > 2L O2

PO intolerance

Stridor at rest

SCAHC PRO Order Set

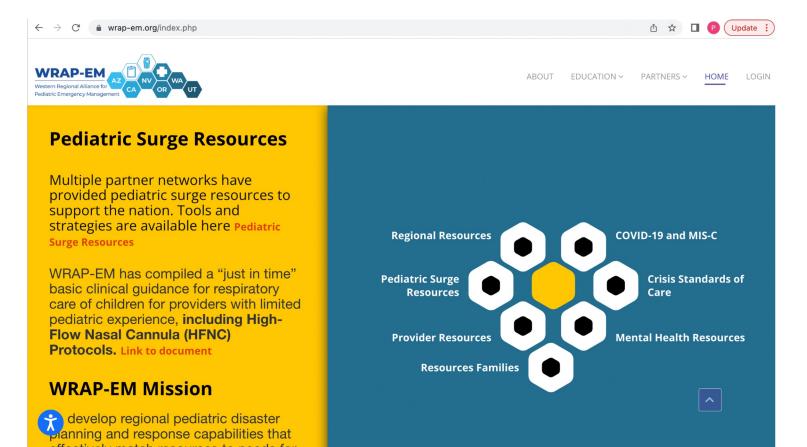
		Antibiotics
Nursing	PRN Medications	Ceftriaxone 50mg/kg IV daily
*Place on respiratory observation	<u>Oral</u>	Azithromycin 10mg/kg IV daily
*Vital Signs on arrival to observation unit and Q6H	*Acetaminophen suspension mg Q6H PRN fever	Azithromycin suspension 5 mg/kg PO daily
*Activity level (ad lib)	*Ibuprofen suspension mg Q6H PRN pain or fever not resolved with Acetaminophen	Doxycycline 2.2 mg/kg IV BID
*Diet (normal diet)	*Ondansetron suspension mg Q6H PRN	Doxycycline 2.2 mg/kg PO BID
*Call ED Physician at x7327 for any concerns until 0600	nausea or vomiting Nebulized	Amox-Clav suspension 45 mg/kg PO BID
*Continuous pulse oximetry	Albuterol 2.5mg nebulized Q2H PRN	Cefdinir suspension 7 mg/kg PO BID
*Oxygen to maintain O2 sat > 94%	wheezing or shortness of breath	
*Bulb suctioning Q2H PRN	Albuterol 5mg/hr nebulized for _ hours	Conculto
Insert IV	Racemic Epinephrine Q1H PRN stridor (in comments: call the responding clinician)	<u>Consults</u> Pediatrics


Antihiotics

Seattle Children's: https://www.seattlechildrens.org/healthcare-professionals/gateway/clinical-resources/pathways/

particular population or clinical condition. The aim is to improve quality of care through the

https://www.seattlechildrens.org/globalassets/documents/healthcare-professionals/clinical-standard-work/bronchiolitis-pathway.pdf (Good for HFNC)



CHOP

https://www.chop. edu/clinicalpathway/bronchio litis-emergentevaluationclinical-pathway

WRAP-EM

Just-in-Time Basic Clinical Guidance for Pediatric Respiratory Illness

Version 1

Background: This document addresses a unique educational need for physicians caring for pediatric patients in receiving center emergency departments. There are multiple facilities with limited pediatric capabilities that care for children as they await transfer or the opening of more high-level pediatric beds. Our intent is to provide basic clinical guidance for respiratory care for children to help in these circumstances. It is expected that this is most valuable as a "just in time" reference for providers with limited pediatric experience. It is not intended in scope to be a pediatric intensive care manual for respiratory illness, but rather the management of patients as they await transfer to a higher level or improvement in their clinical condition.

Critical disclosures:

- *This document presents an evidence-based approach that is appropriate for most patients. It should be adapted to meet the needs of individual patients and situations and should not replace established protocols or clinical judgment.
- *Ideal care for some of these children may be to transfer to a higher level of care and this guidance should not be used as a substitute for that when transfer is possible and clinically appropriate.

HHFNC logistics

Additional Information and HHFNC Initiation

HHFNC Mechanism of Action:

- Enhanced washout of CO2
- Decreased inspiratory resistance by nasopharyngeal stenting
- Support of oxygenation by increasing mean airway pressure (MAP)

 Decreased work of breathing by enhanced humidification system

Definition & Mechanics

- Heated and highly humidified air-oxygen blend delivered via specialized cannula at high flow rates
- HFNC prongs are longer and more flexible than traditional prongs thereby reducing oxygen leakage
- The HFNC system has no audible alarms, so patients should remain on cardiopulmonary monitors.

HHFNC Pre-Initiation Considerations: Optimize nasal suctioning Administer an antipyretic for comfort Address hydration needs, consider bolus if clinically hydrated Low-flow nasal cannula for decreased saturation Monitor patient for 15-30 minutes following interventions Fail HR, RR stable or improved when calm? Pass O2 sats 90% or higher Escalate care to HFNC or non-invasive Remains on RA or low-flow nasal No clinical signs of deterioration positive pressure ventilation cannula, if started **High Flow Nasal Cannula Initiation** Initiate flow at weight-based settings (weight x 2 = flow rate in L/min, max 20 L/min) • Initiate FiO2 at 0.4 and titrate FiO2 to keep SpO2 89-94% . Reevaluate after initiation every 30 minutes until stable or improving, then hourly x 4 hours

https://wrap-em.org/index.php, then links to