

Management of Common Cardiac Conditions

Leon M Ptaszek, MD, PhD, FACC, FHRS

Assistant Professor of Medicine, Harvard Medical School Cardiac Arrhythmia Service, Massachusetts General Hospital

15 July 2024

Disclosures: Research grant from Anumana; Consultant for Abbott, Bristol-Myers Squibb, NeuTrace, Medtronic, Moderna, Pfizer, Voiant

Corrigan Minehan Heart Center

1. Recognize and evaluate coronary artery disease.

2. Recognize and evaluate heart failure.

3. Recognize and evaluate cardiac arrhythmias.

2

1. Recognize and evaluate coronary artery disease.

2. Recognize and evaluate heart failure.

3. Recognize and evaluate cardiac arrhythmias.

3

Which of the following statements regarding the prevalence of ischemic heart disease is correct?

- A. Responsible for ~25% of all deaths globally.
- B. Responsible for ~50% of all deaths globally.
- C. Responsible for ~60% of all deaths globally.
- D. Responsible for ~70% of all deaths globally.

Which of the following statements regarding the prevalence of ischemic heart disease is correct?

- A. Responsible for ~25% of all deaths globally.
- B. Responsible for ~50% of all deaths globally.
- C. Responsible for ~60% of all deaths globally.
- D. Responsible for ~70% of all deaths globally.

Ischemic Heart Disease: Scope of the Problem

Top 10 global causes of deaths, 2016

Source: Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2016. Geneva, World Health Organization; 2018.

Ischemic Heart Disease: Scope of the Problem

Top 10 global causes of deaths, 2016

Source: Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2016. Geneva, World Health Organization; 2018.

Ischemic Heart Disease: Scope of the Problem

Top 10 global causes of deaths, 2016

Source: Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2016. Geneva, World Health Organization; 2018.

74-year-old man with multiple cardiac risk factors, no documented CAD. Reports SSCP for 6 hours, not clearly exertional. One episode of nausea and vomiting in ED.

BP: 90/60 HR: 78 (SR) RR: 14 O2sat: 90% RA Neck exam: JVP at 9cm Lung exam: crackles over lower 2/3 of lungs Cardiac exam: Reg S1S2, +S3

Clinical Case: ECG

What is the most appropriate assessment of myocardial perfusion in a patient presenting with STEMI?

- A. CT angiography of the coronary arteries
- B. Dobutamine stress echocardiogram
- C. Exercise stress test
- D. Cardiac catheterization

What is the most appropriate assessment of myocardial perfusion in a patient presenting with STEMI?

- A. CT angiography of the coronary arteries
- B. Dobutamine stress echocardiogram
- C. Exercise stress test
- D. Cardiac catheterization

ST Elevation MI: Medical Emergency

Cardiac catheterization was performed:

Single culprit lesion responsible for localized ST elevations. Treated with Percutaneous Coronary Intervention (PCI)

Cardiac catheterization is indicated in STEMI management:

• Identify culprit lesion, revascularize (PCI, CABG)

After revascularization (if appropriate):

- Initiate medical management
 - Aspirin and possibly other anti-platelet agents
 - Anti-hypertensives
 - Statin

Case Presentation

HPI:

74-year-old man with multiple cardiac risk factors, no documented CAD. Reports to office for routine visit. Reports progressive exertional dyspnea.

PMH:

HTN

DM2

BMI 37

Exam:

BP: 135/88 HR: 78 (SR) RR: 14 O2sat: 99% RA

Neck exam: JVP at 9cm

Lung exam: clear throughout both lung fields, good air movement

Cardiac exam: Reg S1S2, no S3S4, no rubs or murmurs.

ECG

Non-Specific ST Segment / T Wave Abnormalities

What is the most appropriate type of stress test to perform in an ambulatory patient with typical angina symptoms and nonspecific ST segment and/or T wave abnormalities on ECG?

- A. Exercise stress test, ECG only.
- B. Exercise stress test with imaging.
- C. Pharmacologic stress test (e.g., adenosine) with imaging.
- D. Cardiac CT angiogram.

What is the most appropriate type of stress test to perform in an ambulatory patient with typical angina symptoms and nonspecific ST segment and/or T wave abnormalities on ECG?

- A. Exercise stress test, ECG only.
- B. Exercise stress test with imaging.
- C. Pharmacologic stress test (e.g., adenosine) with imaging.
- D. Cardiac CT angiogram.

Noninvasive Testing for Cardiac Ischemia

1. Recognize and evaluate coronary artery disease.

2. Recognize and evaluate heart failure.

3. Recognize and evaluate cardiac arrhythmias.

22

Case Presentation

62 year old man with CAD and history of AMI 3 years ago (treated with PCI). Now reporting progressive exertional dyspnea over the past 9 months. Associated with 15 pound weight gain (no change in diet) and lower leg swelling. Occasional difficulty in sleeping flat, often sleeps with 1-2 pillows.

Exam:

VS normal

Pulm: fine crackles

Card Reg S1S2 +S3

Extr: +3 edema to knee bilaterally

Case Presentation

CXR: patchy infiltrates bilaterally

Lab work: cardiac biomarkers negative

Echocardiogram: LVEF 38%, no valvular disease

Myocardial Infarction Results in Scar Formation

Ruptured atherosclerotic plaque in the coronary artery leads to blockage of blood flow

Myocardial Infarction Results in Scar Formation

Interrupted blood supply leads to scar formation

Ruptured atherosclerotic plaque in the coronary artery leads to blockage of blood flow

Scar Formation after Myocardial Infarction

Native heart

Post-Infarction

Scar does not contract, leading to decline in cardiac pumping function and heart failure

scar

Heart Failure

- Clinical diagnosis
 - NT proBNP testing
 - Echocardiography

Epidemiology

- 64 million people affected
- Incidence increases with age
- Etiology
 - Ischemic heart disease
 - Non-ischemic heart disease (toxins, hereditary)

GENERAL HOSPITAL Corrigan Minehan Heart Center

Recognizing Signs and Symptoms of Heart Failure

- Know who is at risk
- Watch for key symptoms
- Take action

1. Recognize and evaluate coronary artery disease.

2. Recognize and evaluate heart failure.

3. Recognize and evaluate cardiac arrhythmias – emphasis on risk factors for sudden cardiac death.

30

Sudden Cardiac Arrest (SCA)

Definition: sudden cessation in cardiac activity with hemodynamic collapse, typically due to VT/VF but could also be caused by bradycardia

MASSACHUSETTS GENERAL HOSPITAL CORRIGAN MINEHAN HEART CENTER Which of the following statements regarding the frequency of sudden cardiac arrest events is correct:

- 0.5% of total population 7% of all deaths
- 1% of total population, 15% of all deaths
- 2% of total population, 17% of all deaths
- 2.5% of total population, 20% of all deaths

Which of the following statements regarding the frequency of sudden cardiac arrest events is correct:

- 0.5% of total population 7% of all deaths
- 1% of total population, 15% of all deaths
- 2% of total population, 17% of all deaths
- 2.5% of total population, 20% of all deaths

Case Presentation

 45-year-old man with known CAD, prior MI, is evaluated for dyspnea on exertion (consistent with NYHA Class II). No presyncope or syncope. Stress test reveals a fixed inferior perfusion abnormality that was noted previously, cardiac cath reveals an occluded RCA with left-to-right collaterals (also known). Echocardiogram revealed LVEF 35%, normal chamber size and wall thickness. ECG revealed normal QT interval. No other relevant history or exposures.

Question #5

Which of the following statements regarding the next step in the management of this patient is most correct:

- A. Proceed with ICD implantation without further testing.
- B. Perform invasive EP study to determine need for ICD.
- C. Initiate anti-arrhythmic drug therapy.
- D. Neither medical therapy nor ICD implantation are indicated.

Question #5

Which of the following statements regarding the next step in the management of this patient is most correct:

- A. Proceed with ICD implantation without further testing.
- B. Perform invasive EP study to determine need for ICD.
- C. Initiate anti-arrhythmic drug therapy.
- D. Neither medical therapy nor ICD implantation are indicated.

Impact of Sudden Cardiac Arrest

- Approximately 1% of the population is affected by a cardiac arrest event each year.
- SCA is responsible for 15% of all deaths.

- Risk factors: heart disease, age, male sex.
- Up to 40% SCA non-arrhythmic in origin (e.g., neuro).
- Up to 10% SCA in patients 18 years or younger.

Rapid Treatment of Sudden Cardiac Arrest is Essential for Survival

1-year recurrence up to 40%

Sudden Cardiac Arrest: Opportunities to Help

Community awareness – regognize/treat SCA

 7 out of 10 sudden cardiac death events occur in the home.

- Several interventions have proven effective:
 - Bystander CPR training (3-fold survival benefit)
 - Utilization of and automated external defibrillator (AED)

Patient Outreach to Improve Awareness

Many Lives Saved by Rapid Response to SCA

SCA events at athletic events demonstrate the effectiveness of trained personnel and appropriate equipment (AED)

- Damar Hamlin
- Christian Eriksen

Impact of Antiarrhythmic Drugs on Sudden Cardiac Arrest

- Class I and Class III antiarrhythmic drugs increase
 mortality in the absence of an ICD, amiodarone is neutral
 - CAST (flecainide, encainide)
 - SWORD (sotalol)
 - CAMIAT, EMIAT (amiodarone)
- Antiarrhythmics can decrease the frequency of ICD shocks

Assessment of SCA Risk: Who Qualifies for ICD Implant?

Secondary Prevention

Prior cardiac arrest (unless the insult/substrate is *fully* reversible)

Primary Prevention

 Identified populations of patients without prior SCD who are at elevated risk for SCD

Secondary Prevention of SCA: Impact of ICD Implant

Trial	# Patients	Therapy	Drug event rate	Principal finding
AVID	1,016 (81% CAD)	ICD vs. amiodarone, sotalol	17.7%	Mortality 39% decrease with ICD (P<0.02)
CASH	349 (73% CAD)	ICD vs. amio, propafenone, beta blocker	9.8%	Mortality 30% decrease with ICD (P 0.047)
CIDS	659 (82% CAD)	ICD vs. amiodarone	8.3%	Mortality 19% decrease with ICD (P 0.072)

Primary Prevention of SCA: Impact of ICD Implant

Substrate for Ventricular Arrhythmias: Who is at Risk?

CORRIGAN MINEHAN Heart Center

SCD Secondary Prevention: Recommendations for ICD Implant

- Class I
 - Survivors of VF arrest or hemodynamically unstable VT after evaluation to exclude any completely reversible causes (level of evidence A)
 - Structural heart disease and spontaneous, sustained VT (level of evidence B)
 - Syncope of undetermined origin with clinically relevant, hemodynamically significant sustained VT or VF induced at electrophysiological study

(level of evidence B)

SCD Primary Prevention: Recommendations for ICD Implant

- Class I
 - Ischemic CM with LVEF ≤ 35%, MI > 40 days prior, NYHA Class II or III (level of evidence A)
 - Ischemic CM with LVEF ≤ 40%, nonsustained VT and inducible VF or sustained VT at electrophysiology study (level of evidence B)
 - Non-ischemic CM with LVEF ≤ 35%, NYHA Class II or III (level of evidence A)

Conclusions – Sudden Cardiac Arrest

- 1. SCA is a common cause of mortality
- 2. Prevention of SCA (screening for at-risk patients, treating risk factors) is necessary
- 3. Community awareness regarding SCA and CPR/AED training can improve outcomes
- 4. Defibrillator implant indications:

Secondary prevention – SCA no reversible cause Primary prevention – LVEF \leq 35%, NYHA Class II

Thank you

en die des also die twee as

....

.

TREESCOLOUGE

11100

111